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Molecular dynamics simulations of optical conductivity of dense plasmas
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The optical conductivityr(w) for dense Coulomb systems is investigated using molecular dynamics simu-
lations on the basis of pseudopotentials to mimic quantum effects. Starting from linear response theory, the
response in the long-wavelength linkit0 can be expressed by different types of autocorrelation functions
(ACF's) such as the current ACF, the force ACF, or the charge density ACF. Consistent simulation data for
transverse as well as longitudinal ACF’s are shown which are based on calculations with high numerical
accuracy. Results are compared with perturbation expansions which are restricted to small values of the plasma
parameter. The relevance with respect to a quantum Coulomb plasma is discussed. Finally, results are presented
showing a consistent description of these model plasmas in comparison to quantum statistical approaches and
to experimental data.
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I. INTRODUCTION wavelength limit(k—0), both longitudinal and transverse
quantities coincide and lead to the same response of the sys-

In the present paper, we report molecular dynartib)

. . . em,
simulations to evaluate the transport properties of dense plag-
mas. We compare with quantum-statistical calculations and
experimental results. To start with, some notations relevant
for the introduction of the optical conductivity and the dy-
namical collision frequency are given. whereo(w) is denoted as the opticé&br dynamical conduc-

The different optical and transport properties of Coulombtivity. For applications with respect to the optical properties
systems are related to the dielectric tenggt,»). The dy-  of plasmas, this limit can be taken if the wavelength of the
namical and static structure factor, optical spectra, bremselectromagnetic radiation is large compared to the distances
strahlung, stopping power, reflectivity, dc conductivity, andof the charge separation. In particular0)=oy. describes
other properties have been investigated recefith4]. For  the static dc conductivity. The dynamical conductivity is re-
an isotropic and homogeneous system, the dielectric tensddted to the dynamical collision frequeneyw) via a gener-
can be decomposed into a longitudinal and a transverse padfized Drude formuld5,6]

(o) =1lim o' (K, ») = lim o~(K, w), (3
k—0 k—0

€ 0 0
. R ki K: . kk _OwP|_
6j (K w) = e-(K, w)?l +e'(k, w)(5 ?) |0 OL ’ o= -+ v(w)’ @
0 0 €

(1) wherewy=(E €2/ emy) Y2 is the plasma frequency witt,

. being the particle densitg, the charge, and. the mass of
where the matrix representation is valid assumiagké,  the component species(note that spin is included as well
The longitudinal part is related to the dynamical structureThus, alternatively, the collision frequency can be considered
factor as the quantity which contains all the information on micro-

5 scopic processes in the system. The present paper is con-
° ) = ﬂ h Im 1 ' 2) cerned with the investigation af(w) or v(w), respectively,
n& efe—1" LK o) and, in particular, the dc limit.
Starting from the microscopic description, we will con-
sider a nonrelativistic two-component fully ionized neutral

which will be used as the starting point in the upcoming

discussionn denotgs .the charge density. . .. plasma, suchsaa H plasma consisting of electrons and ions
A related quantity is the nonlocal dynamical conductivity (protons, at temperaturel and densityn=n.=n. of each

o(k,w) which is defined according toek,®w)=1  component. Within the Coulomb system, the coupling to a
+i5(K, w)/ (qw) and can also be decomposed into a longitu-ransverse vector potential is neglected, thus not accounting
dinal o'(k,w) and transverser'(k,») part. In the long- for radiative corrections. This is possible for temperatures
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TABLE |. Parameters and results of MD simulations for the corrected Kelbg potential8Ecat I'=1. The index number refers to
different temperatures. The corresponding values for the electron depsihd the degeneracy parame®rand the interaction potentials
at zero distancé/.(0)/kgT and V. d0)/kgT are given; see also Fig. 1. For the collision frequency at zero frequet®@yand theq,
characterizing the high-frequency behavior of its real and imaginary part, see Sec. IV.

No. T (163 K) Ne (107 cmi®) 0 Vi(0)/ kg T Ved0)/kgT 1(0)/ wp) o o
1 16 0.2096 10.71 -8.52 7.49 0.224 3.4+0.3 1.05+0.06
2 33 1.839 5.20 -6.83 5.61 0.221 3.840.2 1.05+0.02
3 100 51.17 1.71 -4.49 3.64 0.150 3.5+0.4 1.04+0.02
4 350 2194 0.49 -2.49 2.31 0.032 3.4+0.7 1.02+0.04

not too high as considered here. The interactions are ddhe range of validity of these approximations and to extend
scribed by the longitudinal part, the Coulomb potential, andhe range of parameter values. Classical MD simulations

the Hamiltonian is [1,13-17 calculate the trajectories of a finite number of par-
5 ticles, neglecting the quantum character of the dynamical
H=S Pea N 1 €&y 5) evolution of the many-particle system. A quantum-statistical

treatment can be given using wave packet molecular dynam-
ics [18] or applying path integral techniqués9].

with a, 8 denoting the index of the particle of componeats The use of classical MD simulations for the evaluation of
d, respectively. Thus, only longitudindplasmony, but no  static equilibrium properties, such as the equation of state,
transversgphotons, excitations are described by the Cou- has been shown to be equivalent to a quantum treatment. For
lomb Hamiltonian. In thermal equilibrium, the plasma is this, the original Coulomb interaction is replaced by an ap-
characterized by the coupling parameterT’ propriate pseudopotential, where the short-range part of the
=e(4mnl3)3(4meokg )™t and the degeneracy parameterinteraction is modified, reflecting the quantum character of
0 =2mksTA 2(372n)"23. Details of the plasma properties the interacti(_)r[ZO]. In particular, the singularity of th(_a Cou-
density, temperature, and degeneracyat. relevant for our |omb potential ar=0 has to be smeared out to avoid insta-

calculations are given in Table I. Besides the values given ifilities. Potentials which are motivated in this way can also
the table, we consider parameters of density3.8 be used in other classical calculations—e.g., equilibrium cor-

X 1021 cmi 3 and temperature 6F=33 000 K which is moti-  felation functions—as they are of interest with respect to
vated by recent experiments in dense xenon plasighs {ransport and optical properties. For MD simulations of non-
They correspond to a nondegeneréBe=3.2) and strongly ideal plasmas, the Deutsch interaction poten_Eml] was
coupled plasm&l’'=1.28. Note that the conditions given in USed in the pioneering workEl3] and later simulations
Table | actually correspond to partially ionized plasmas sincé22:23- It has the form

the Debye screening length =(2n€%/ egkgT) ™2 is on the ce r

order of the Bohr radius. We consider only free charge car- VEd(r) = C—d{l - ex;{— —D)} (6)
riers in the context of a partially ionized plasma; the bound Ameqr e

electrons(atomg are neglected. A comprehensive treatment, hare the parameter

of these systems should account for bound states as well; see

oo 2Me 240 izta g ATredlTn = Ta gl

Ref.[7] and Sec. VI. 1 A 1 1 1
We are interested in the reaction of the system to an ex- Ay= Fhg= ——=, —=—+—, (7
N V2mmMegkg T Mg Mg My

ternal perturbation. In the case of weak external fields con-
sidered h.ere, linear response .thepry can be applied. Strong related to the thermal wavelength
external fields produced, e.g., in high-intense ultrashort laser
pulses, lead to large quiver velocities of the electrons exceed- Acg= V27h2/(mg + mg)ks T

ing the range of linear response. Collisional absorption in

strong electrical fields has been investigated by different au- ) o ) )
thors; see, e.g., Ref$8—11. A comparison of our linear A more systematic derivation of a pseudopotential which

response treatment with the strong field case will be given aiePproduces the equilibrium properties of the quantum Cou-
the end of Sec. IV. lomb system via classical statistics has been given by Kelbg-

Within linear response theory, transport coefficients, inS€€[20,24-on the basis of Slater sums. In particular, we use
particular the dynamical conductivity, and further quantitiesthe so-called “corrected Kelbg” potentigS]

such as the dynamical collision frequency are related to equi- 2
librium correlation functions. Analytical expressions have ng(r):ﬁ{F<L) —fﬂzcd(&d)eXP(— r_z)}
been derived in earlier pap€s,6,12 and have been evalu- Ameyr Acd €€ Aed

ated within approximation schemes as outlined below. These (8)

quantum statistical approaches are limited to small coupling
parameters—e.gl; < 1. Simulations are necessary to checkwith
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0 Our aim is to compare different approaches to the dy-
ViksT namical conductivity of dense plasmas. Classical MD simu-
lations based on an appropriate pseudopotential are com-
pared with the analytical quantum treatment of the Coulomb
system. This allows us to discuss the justification of the ap-
plication of pseudopotentials in numerical simulations; see
Sec. IV. Both approaches are discussed in the context of
experimental data, in particular the static conductivity of
fully ionized dense plasmas.

! Il. DYNAMICAL STRUCTURE FACTOR AT FINITE
/ vl WAVE NUMBER
0.2 0.4 0.6 0.8 1

Within linear response theory, the response to external
perturbations is given in terms of equilibrium correlation
functions according to the fluctuation-dissipation theorem
[14,20,26-28 see alsd29]. In the following, we consider
the dynamical structure fact¢2) which is a typical quantity
in classical MD simulations. It is given byl 4]

S('Z""):ﬁ dtf darf r'(p(F 1) p(F",0))ek ) iex
9

1 1 * i
rir, =N dt (py(t) p(0))et, (10
0.2 04 06 08 1 77

. ) . . where pi(t) is the Fourier transform of the charge density

FIG. 1. Interaction potentials as function of distanag, F =S S(F=F. (). Th lar brackets d t
=€?/(4mekgT): (left) electron-ionV,(r), (right) electron-electron P, =2 18 —Feo(t)). The anguiar brackelts denote an
V,dr); 1-4: Kelbg potentia(8) at temperatures given by the corre- aVerage over the thermodynamic equilibrium distribution

sponding index numbers in Table; I. 5: Coulomb potential. and define the correlation function
t0+T
e - el =(AOB) = m T [ avatsv)B0). (1
bg=— ———, F(0)=1-exg—x?)+\Vmx1-erfx], T Ty
KgTAcq

Corresponding to the principle of ergodicity, it is assumed
that the long-time behavior of a trajectory gives the ensemble
y exp(— y2)dy average with respect to equilibrium. After some initial time
W ' to establish the equilibrium distribution in the system and to
¢ form the correlations using a special procedure described in
[16], different pieces of a trajectory startingtgtan be taken

B - 1 to mimic the average over the thermal equilibrium. As shown
Asi(&e) = = VT&ei + In[ \'7-,52(5(3) + _§(5)§§i> in [17], these pieces are statistically independent if they are
4 taken at times, separated by at least the dynamical memory

Acd éod = \T|Ecd + In[zvﬂgeg fo

= yexd-ydd time.
+ 4\5’7756 f M} , The trajectories’; ,(t) are simulated by MD methods us-
o 1-exd-mély) ing periodic boundary conditions and the minimum image

convention(see, e.9.;30]). The basic MD box has the edge
where£(n) is the Riemann-Zeta function. Note that the defi-Size L=(N/n)** which is determined by the number of par-
nition of the parametex.q, Eq. (7), is slightly different from  ticles, N, in the basic cell at a given mean plasma density
\D, for the Deutsch potential. The interaction poten@  The images of this basic cell are generated by shifting the
corresponds to the Coulomb potential at large distances arRfisic cell by integer multiples of in all directions. The

provides an exact value of the Slater sum and its first derivadumber of particles in our simulations ranges frbim200 to
tive atr=0. Figure 1 shows the pseudopotential for the pa-1000. The choice oN is dictated by the criterion that the

rameters given in Table | which will be used in the calcula-screening length should be considerable smaller than the MD
tions and simulations later on. The temperature determined0X size. Thus, for smallel’ a larger simulation box is
the depth of the short-range part in the corrected Kelbg pobeeded. . R .

tential. Further columns refer to the dynamical collision fre- The forcechya:Fg‘;r# F'ggg on the particle labeled by
guency and will be explained below; see Sec. IV. of speciesc due to the surrounding particles are separated
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into two contributions. The short-range contributig™®* ~ Sponse to a homogeneous external fitd0, can be ob-

=Ec’,’ﬁlzcd(r*“d’g—r*c,a) is due to the nearest imagémearest tained within this approach.
neighbor$ {d, 8} #{c,a} of all the particles following the

conventional MD techniques. The contributidﬁﬁg origi-
nates from interactions with particles and images outside a

basic cell centered around the positigy, of the particle As discussed above, it is impossible to carry out the long-
{c,a}. Part of the influence of these far images can be apwavelength limitk— 0 in calculating the dynamical structure
proximately taken into account considering Ewald sumsactor from the charge autocorrelation functiohCF), be-
[13,14]. As will be shown below, if the dimensiob of the  cause of the finite extension of the MD basic simulation box.
basic cell is large in comparison to the screening length, theiowever, it is possible to consider this limit for the current
contribution of the Ewald sums turns out to be small. ACF, as will be argued now. In the current ACF, plasmon
Another feature of long-range interactions is determinecbscillations will appear in the limik—0 as well. Charge
by the mean electrical field which is produced from theseparation at long distances produces a surface charge den-
charge separation at scales larger thaaccording to the sijty. If the surface is far away, it produces a homogeneous
Maxwell equations. In particular, we are interested in plas{k=0) mean electrical field within the simulation box which
mon excitations. ConSiderian maCI‘OSCOpiC Charqe densit}é necessary to inc'ude in the |Ong_Wa\/e|ength ||m|t As a
waves pi(t) = [dr{p(F,t))exp(ik -F) with wave vectork=k&,  consequence, plasma oscillations are obtained.
[we have already assumed in Ed) that they are propagat- On the macroscopic level, the Maxwell equations relate
ing in z direction], we obtain a long-range mean fiei}(t) this mean field to the component of the average current

= [d*rEX(F, t)exp(iK-F) according to the Gauss law as density. Following Eq(12) and the discussion in the previ-
ous section, we find in the Fourier space

IlI. CURRENT AUTOCORRELATION FUNCTION AT
ZERO WAVE NUMBER

— 1
IKER(t) = —pi(D). (12) d— 1
e L Eeolt) == (), (15

€

This mean field produces a force on the charges so that they 0

are accelerated. This results in a change of the average mawith the macroscopic current

I’OSCOpiC current, R N R
] o) =30 = ) = <E ecﬁc,a<t>> 16
(=G50 = [ g ek 0, 13

as an average over the basic simulation cell. Taking the ini-

with the longitudinal component of the current density: tial condition E(O)zo, the integration of Eq(15) leads to
170 = 3 € U o) 87 = T o(D). (14)
c,a

1—- 1
0= {30 = (3 ecré,a<t>>. a7
The current density is related to the time variation of the 0= \ca

chgrgze density according to the balance equatipiit)/dt  Neglecting the contribution from the Ewald sums, the long-
=-ikJi(t), and plasma oscillations are obtained. We will range interaction forces are given by the mean field accord-
demonstrate this in detail for the special cdse0 in the ing to Flggg(t):eCEZ(t)éZ which contribute to the longitudinal

following section. component. In particular, the equation of motion for an elec-

Since this mean field is long ranged and not restricted 19 0n reads
the screening length, it has to be taken into account ad-
equately and should not be influenced by the gizef the e =chor R
periodic boxes. Therefore, the dynamical structure factor can M~y - Fen —€E(DE,. (18)

only be calculated fok=2#/L. Only in this case, the den-
sity fluctuations which lead to plasmon oscillations correctly

treated considering all particles within the basic MD bOX'mean value. But the amplitude of these fluctuations is much

Plasma waves with wavelengths exceeding the leguf .larger than the fluctuations of the mean-field for@E4t)€,.

thg basic box are not correctly mplemerytgd by usIng Perly; 1as been shown that the energy is conserved if the associ-
odic boundary conditions. Consequently, it is not possible in

. ; . ) . .~ "ated energy of the mean field is includgd®)].
th:oway to describe collective excitations in the limit = 00 oo o plasma oscillations can be demon-

Calculations of the dynamical structure factor at strated in the following way. If the mass ratio between elec-

k=27x/L have been performed for the system considere rons and ionsme/m is small, the ion current can be ne-
here: sedd]. It has been shown that fdr<2 the MD simu- lected. The derivative of the averaged total current density

lations for the dynamical structure factor at finite value& of Is obtained as

The short-range forceBS"" are fluctuating around a zero

are in good agreement with the analytical results obtained ) Ny eN R
within perturbation theory1,31]. In particular, the plasmon =Jt=-el D —Ueq ) = —[eE ()& (6], (19
peak is well reproduced. However, no results for the re- dt a1 dt Me
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N
£= (2 P 1S SR (O KO
N a=1 a—l i.B & b

The forceé includes only electron-ion interaction forces. All
electron-electron interaction forces are compensated since
they do not change the total momentum of the electrons.

Although the forceFShort on each electron is typically much
greater than the forerZ(t)eZ from the polarization field, the
average over all electrons is of the same order of magnitude
aseEA(t). If we now differentiate Eq(15) and substitute the
derivative of the current using E€¢L9), we obtain the equa-
tion for the mean field:

@2 2 FIG. 2. Current autocorrelation functid@2) for the Kelbg po-

—ZEz(t)+w2,EZ(t):—p—'<§z). (21 tential (8), I'=1.28, my/m;=0.01; total number of averages 5

dt P e X 10°; MD trajectory length of 2.X 10%7,, 7.=27/w,, period of
electron plasma oscillations; circles, MD simulatidfis(t) of com-

In the average(£) vanishes, so that plasma oscillations areponents not influenced by the mean field, triangles, MD simulations

described. The corresponding oscillations in the current ACKY(t) for the longitudinal component including the mean-field term

as obtained from MD simulations are shown below. in the equation of motion.
Due to the mean field, MD simulations for telirection
[longitudinal componenj-(t)] and thex,y directions|trans- As a technical note, we mention that the contribution from

verse components (t)] behave in different ways. In particu- the Ewald sums can be neglected for the parameter values
lar, two different current ACF’s can be derived: the longitu- considered here. This is expected for a nonideal plasma
dinal one Ki: and the transverse on&j. Both were where the effective interaction potential decreases exponen-
calculated separately in an earlier papE2], using different  tjally with distance due to screening. We illustrate this fact
MD simulation procedures, but can be derived from the sam@y comparing MD simulations with and without Ewald sum-
MD simulation if different components are taken. Within mations. The current ACF for a plasmalat 1 and tempera-
MD simulations[14,15, the normalized current ACF ture of 316 000 K using the Deutsch potential is shown in
(Ui (0)) 5 F.ig. 3. As can be seen, the_neglect of Ewald sums is qf no
KL/T(t) > =—5={70j™0) (22 significance for the evaluation of these quantities. This is
49 Eowp|L3 also found for the dynamical collision frequency discussed
below, which is shown for these particular MD simulations
without and including Ewald sums in Fig. 4.

is calculated. Here, the long-wavelength lirtht— 0) of the
Fourier transform(16) of the current density, Eq14), is
considered, and the normalizing factor is equal (§6)
=e?N(v?)/3=€qwj L%/ B. IV. DYNAMICAL COLLISION FREQUENCY

Using the balance equatiatp,(t)/dt=-ikj(t) we can ex-
press the dynamical structure factor in terms of the longitu-
dinal current ACF instead in terms of the density autocorre;
lation function (10). This ACF has been evaluated within
MD simulations, solving the equation of motion and consid-
ering thez component of the current density. After imple- 17 K(?)
menting the mean field explicitly, the zero-wavelength limit |
can be considered. A detailed description of the MD simula-
tion procedures is given if81]. In particular, no dependence
on the mass ratio fom,/m;<0.01 was found.

As an illustration, we show results of MD simulations for
the longitudinal and transverse current ACF in Fig. 2; see
also[12]. It can be seen that after inclusion of a mean field
acting on thez component, the plasma oscillationsKle(t)
become well pronounced in contrast to a monotonously de-
creasing behavior for the correlation functidti; of the
transverse current as was also obtained in previous MD 0' T é i "'1' o 'é ' '8
simulations[13,15,17. It should be stressed that the ampli-
tude of the oscillations in the longitudinal case does not de- F|G. 3. Results of MD simulations with the Deutsch potential
pend on the number of particlel, in the simulation. The () for the transverse current AGR2) using nearest image method
oscillation frequency tends t@, for an ideal plasmécolli-  without Ewald sums(circles and simulations including Ewald
sion frequencyv(w)=0]. sums(solid line) for '=1, T=316 000 K.

We will now discuss the results of the current ACF in the
context of the dynamical conductivity and the dynamical col-
lision frequency. Within linear response theory, the current

0.1
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0.16 In the long-wavelength limit, the structure of the general-

ized Drude formuld4) is obtained. From this, the dynamical
collision frequencies*'T(w) could be deduced, from either

0.12 o i
the longitudinal case or the transverse case, respectively,
f 60(1)2
‘ i g oy=— 0%pl
008 lim o~T (K w) = ———2—. (25)
p k—0 —io+ 1" (0)

Since the expressions between the conductivities and
current-current correlation functions are different for the lon-
gitudinal and transverse cases, the deduced collision frequen-
cies v (w) and v"(w) are with Egs.(23) and (24), respec-

0.04 -

0 tively,
0.12 - L3
Im V(&)@ V(o) = fprl_l + (ﬂ - ﬂp_l> , (26)
1 ) Wp| B(] | >w+i77 Wp| w
0.08 -
T 3
L .
v ((1)) - E'?w?rl + Iﬂ. (27)
001 o BU Darig  @p
The collision frequencies should be identical kor 0 since
the dynamical conductivity is given according to E3)
00 and (4). However, the correlation functions are calculated
) with different schemes as explained before. The current cor-
004 relation functions in the long-wavelength limit are given as
FIG. 4. Comparison of dynamical collision frequency, deter- (j;j)w+i,7:<j2>J ei(“’””)tK”(t)dt. (28)
0

mined from MD simulations via the minimum image method with-
out Ewald sumg(circles and simulations including Ewald sums

; i T
(solid ling) for '=1, T=316 000 K, using the Deutsch potent(é). The dynamical collision frequenmed— (w) have been

calculated from the simulation data for the current ACF’s at

o zero wave numbe(see Fig. 2and are shown in Fig. 5. Both
ACF can be related to the longitudinal and transverse conggincide quite clearly as expected. Note the considerable im-
ductivity, respectively. According t§12], we find for the  hrovement of accuracy in comparison to earlier results in

longitudinal case Ref. [12]. Additional verification of self-consistency is per-
3L formed by calculating Im(w) from Rev(w) in accordance
ot (k,w) = (BIL) ks i artin (23) with the Kramers-Kronig rule. Therefore, our analysis
’ 1 -(iBlegwl3) ;K wtiy showed that the transverse conductivity is identical with the
longitudinal conductivity in the long-wavelength limit if the
and the transverse case mean field is taken into account in the longitudinal case. This

agreement and the validity of the Kramers-Kronig rule prove
the high accurracy of our present MD simulations.

Instead of the current ACF, other correlation functions can
be taken as well, in particular the force ACF or the current-
where the correlation function (A; B>w+i77 force corre_lation function. The following relations could be
= [ze @MY A(t)B(0))dt is the Laplace transform of the re- used for this purpose:
spective ACF. The limit)— 0 has to be taken after the ther-  _ i . d- i i/d-d-
modynamic limit. (j;j>w=—<<f2>—<j;d_tj> )=—<<f2>— <d_tj;d_tj> )

The longitudinal and transverse currerjtg(t) and their @ @ @
long-wavelength limit are given by ttecomponent and,y (29
component, respectively, of the Fourier transform of the cur- q g _
rent density, Eqs(14) and (16). Within a Green function o= a. N B T =
approach to these correlation functions, a diagram represen- dtJ(t) = CE eCdtvc,a(t) = e( + )Fe, (30
tation is possiblg5]. Since the coupling to the transverse _ _
vector potential is not considered, there are no reducible diawhereF,=3"F, , stands for the resultant force of all ions on
grams with respect to the transverse interaction and no termlectrons as all internal forces between electrons as well as
in the denominator as in the longitudinal case appears. Thubetween ions cancel after summation.

UT(kvw) = é(ﬂk-lj-lk- wtin (24)

(O]

the Kubo-Greenwood formul@4) [13-15,26—28relates the Practically, the current ACF provides more accurate re-
dynamical conductivity directly to the transverse currentsults for the low frequencies < wy while the force ACF
ACF. works better for high frequencies. Due to the finite numerical
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[ Revora,

FIG. 6. Real and imaginary parts of the effective collision fre-
quency for the Kelbg potentigB) at I'=1 in dependence on tem-
perature: 1T=16 000 K, 2:T=33 000 K, 3:T=80 000 K.

FIG. 5. Real and imaginary parts of the dynamic collision fre-
quency from MD simulations for the Kelbg potentié8) in the
long-wavelength limit of the transverse cas@rcles and the lon-
gitudinal case(triangles, parameters as in Fig. 2; solid line-
imaginary part obtained from the real péransverse cag@accord- An important question is to which extent the MD simula-
ing to Kramers-Kronig ruleT=33 000 K,I'=1.28. tions shown here are relevant for real Coulomb systems. The

Kelbg potential was constructed to reproduce the static equi-

accuracy of the current ACF obtained from MD simulations,librium properties of dense plasmas, and we expect that it
the linear term proportional taw in Egs.(26) and(27) may ~ Should be appropriate at least to describe low-frequency,
lead to a divergent behavior of Infw) ~ w at high frequen- duasistatic properties. This assumption-whether classical

cies. On the other hand, the corresponding relation for théimulations based on a pseudopotential can be used to mimic
force ACF has no such defect: time-dependent properties of dense plasmas-can be checked

by comparison with quantum statistical calculations
We will only briefly refer to the quantum statistical treat-
. /d. d, ment of Coulomb systems. Details of different perturbative
to) 17 ) . approximations for the dynamical collision frequency can be

dt’ dt
Hw) = (81)  found in[5]. In particular, expressions for the collision fre-
. d, d. uency in the form of
i eqapL%/+ <aJL; d_t]L> arency

Uw) =1 () VP (w) (32

The real and imaginary parts of the dynamic collision
frequency are presented in Fig. 6 for different temperatureave been given wheré"(w) contains the contribution of
at a coupling strength df=1. Table | shows the parameters the force-force correlation function in screened binary colli-
for the simulations in more details. It is seen that with de-sion approximation and the renormalization facattw) ac-
creasing temperature, the absolute values of the real armbunts for higher moments of the distribution function in
imaginary parts of the collision frequency increase over thecalculating the response to external perturbations; see also
whole frequency range. This is expected from Fig. 1, wherg6]. As well known from the Chapman-Enskog approach in
the strength of the attractive potential increases also withkinetic theory, higher moments of the distribution function
decreasing temperature. Note that the peak in the real part lve to be accounted for to include the effect of e-e colli-
more pronounced and shifted to higher frequencies with desions and to obtain the correct prefactor of the Spitzer result
creasing temperature. Since the collision frequency is showfor the conductivity. The comparison of MD simulations
as a ratio with respect to the plasma frequency which dewith an analytical treatment is shown in Fig. 7. For this,
creases with decreasing temperature for a fikedhis ten-  strong collisions and dynamical screening are accounted for
dency is slightly suppressed in the presentation. in a consistent manner by a Gould-DeWitt scheme for
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0.1

Im V@)@,

0.4
0.01

02 T N

4

0.001

10 e, 100

0.2 FIG. 8. Real and imaginary parts of the effective collision fre-
e quency at high frequencies with power fits for the Kelbg potential
01 1 wa, 19 (8). Parameters correspond to the index numbers given in Table I.
Dashed lines are the power-law fits Re 3% I'=1.

FIG. 7. Comparison between MD data for the Kelbg potential ) o
(8) (open circlesand the quantum-statistical treatment for the Cou-IN the high-frequency limit. Therefore, we conclude that the

lomb potential. The Gould-DeWitt scheme is used, accounting folKelbg pseudopotential is not able to correctly describe the
dynamical screening and strong binary collisions. Solid line: includ-high-frequency behavior of a Coulomb system. However, the
ing the renormalization factar(w), Eq. (32). Dotted line: without ~ imaginary part of the collision frequency follows the power
the renormalization factor. The dot-dashed line gives the analyticdlaw Im v(w) ~ w™ with the exponenty; deduced from the
result for the high-frequency behavior of Ren) for the Kelbg  simulation data close to unitysee Table )l which is in
potential(8). I'=1, T=33 000 K. agreement with the analytical resuttw ™, valid for both the
Coulomb and Kelbg potentials.
»PO(w). Furthermore, two moments are taken into account |n an earlier papel33], a comparison of our perturbative
by a frequency-dependent renormalization faattw) [5]  approach to results obtained from a MD code by Pfalzner
which are evaluated in statically screened Born approximaand Gibbon34] has been reported fdir=0.1. The collision
tion. Good agreement for both the real and imaginary parts ifrequency is derived from a heating rate using the high-
observed forw < wy; see[12]. In this region, the quantum- frequency asymptote of the Drude formula. In this case, good
mechanical treatment of the Coulomb potential and the clasagreement between MD simulations and analytical calcula-
sical simulations based on the corrected Kelbg potential argons for a classical model plasma is found for higher fre-
consistent. Note that an evaluation of the force-force correquencies.
lation function alone is not sufficient, and the renormaliza- Figure 9 shows the comparison of MD simulations and
tion factor has to be taken into account to obtain correcperturbative results with Schlanges al. [35] for a fixed
results, in particular in the low-density low-frequency limit. density ofn=10?? cmi 3 and frequency ofv=3wy, as a func-

In the high-frequency limit, the asymptotic behavior of tion of the coupling parametét. Schlange®t al. considered
the collision frequency for a Coulomb potential and a Kelbgstrong fields, which are parametrized via a finite quiver ve-
potential differs. As a consequence, the agreement is poor fdocity. With decreasing quiver velocity, the limit of linear
w=wp. In order to investigate the high-frequency behaviorresponse is approachétil,36. Here, we consider a quiver
of the simulation data in more detail, a logarithmic scaling isvelocity of v=0.2v,, which is given in terms of the thermal
used in Fig. 8. The real part can be fitted by a power lawelocity vy, and is low enough to be already in the linear
Rev(w)~w ™. The corresponding values af, deduced response regime. We find identical results if we evaluate the
from the simulation data are shown in Table I. The result iscollision frequency(32) in the dynamically screened Born
in good agreement with the analytical behavior-ef»3°  approximation (Lenard-Balescu collision tenm see [5,6].

[32] for the Kelbg potential. However, it is in disagreement Dynamical screening within the Born approximation was
with the results for a Coulomb potential which giveso™'®  also taken into account in R€f35]. On the other hand, MD
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V(O)/(’%l

0.3

0.2+

0.1+

r 0 ———rr —

oo 1K
FIG. 9. Real part of the collision frequency for charge density 10000 ! ’
Ne= 102_2 cm® at frequencyw=_3wy. A: MD results for the Kelbg FIG. 10. Dependence of the static collision frequency on tem-
potential(8). Solid curve: Ref[35] for quiver velocityvo=0.20naS  perature af"=1. A: MD results for the Kelbg potentia). Solid
well as linear response on the level of dynamically screened Borij,e- interpolation formula33).

approximation(Lenard-Balescu collision termDashed curve: lin-

ear response including strong collisiofls matrix). - . .
P g g ofE ) sults for the collision frequency and the static conductivity

. . . . — . including error bars are shown in Figs. 11 and 12.
simulations give re.sults which are significantly higher than The perturbative approach to the dynamic conductivity
the results shown in Ref35]. The MD results for the dy- 51 mentioned above, has been extended for the static limit
namical collision frequency are, however, in qualitative - {5 3 Jarger region of plasma parameter values. In par-
agreement with the Gould-DeWitt result. Strong collisionSie oy an interpolation formula for the dc conductivity of a
are of relevance in t.hI.S region. To support this, we s_how thqeu”y ionized Coulomb plasma was derived recerigy]. Us-
result_for Itlhe collision fr(?_quenpy 'f.calcula.t;?d with - the 5" halytical results of the quantum-statistical approach for
T-matrix collision term. We find significant differences be- different limiting cases as an input, the following expression

tween results for the cqllision frequem_:y V\{hen _taking INtOsor the dc conductivity has been given as functionloand
account beyond the static Born approximation either the efg,.

fects of strong collisions or dynamical screening. In agree-

ment with the treatment of the dynamical structure fafigy b b -1
3 ) . ERR_ . T3/2 1 2

the perturbative approach becomes invalid'iexceeds the oy =agT (1 +®—3,2> [D In(1+A+B)-C- b.+10 |

value of about 2. As already seen from Fig. 7, an exact co- 2

incidence between MD simulations for the collision fre- (33

quency based on the Kelbg pseudopoteriialother forms . ) i ) )

of the pseudopotentiawith quantum calculations for the WhereTin K, o in (2 m)™, and with the functions

Coulomb system is not expected for frequencies above the

2
plasma frequency. In particular, the high-frequency asymp- 5 —p-3__ 1 *aJ/I"® [, + ¢, In(c,l¥2+ 1) 2,
tote is not correctly reproduced. 1 +a,/T%0 + ag/T*e?
V. STATIC COLLISION FREQUENCY B =bs(1 +c30)/TO/(1 +c30%),

Another important aspect is the validity range of pertur-
bative results obtained by the quantum-statistical approach.
As discussed abov@ee alsq1]), perturbative analytical re-
sults are applicable in the regidh<2. For strongly coupled
plasmas, interpolation formulas can be constructed based on
correct analytical behavior in limiting cases and simulation
data for intermediate regions. In the following, we will dis-
cuss the results from MD simulations, analytical approaches,
and experimental data for the electrical conductivity in the
static limit.

From MD simulations for the current ACF, we have cal-
culated the collision frequency(w). According to relation |
(4), we obtain the dc conductivityy.= eowS,/v(O). Results i T T
for »(0) as a function of temperature at fixed nonideality 01 !
parametel’=1 are shown in Fig. 10. Apart from the param-  F|G. 11. Static conductivity depending on the nonideality pa-
eter sets given in Table |, further simulations have been dongameterI'. A: MD results for the Kelbg potentia(8) for T
Simulations have also been performed for a fixed tempera=33 000 K. Solid line: interpolation formulé83) for T=33 000 K.
ture of T=33 000 K and varying coupling parametér Re-  Experimental data® [39], X [40], M [41], A [42], and <« [43].
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17 A compilation of various results for the static and the
1 ReViay,

dynamic collision frequencies is shown in Fig. 12. Besides
the values for the real part of the collision frequencywat
=wp as obtained from the current ACF, data for the colli-
sional dampingy, of the Langmuir waves &=0 are shown.
These were obtained in Rgf31] through extrapolation of
MD data for the total damping(k) to the limiting value at

k— 0. The data ford(k) were found measuring the width of
the peak ofS(k,w) which corresponds to the Langmuir
waves. The interpolation procedure was based on the suppo-
sition that the Landau damping in a nonideal plasma does not
i —— differ significantly from that in the ideal plasma. This as-
01 1 sumption was supported by MD results[iB1]. Comments

on the static results were already made in the context of Fig.
for the Kelbg potentia(8). A: »(w=0) obtained from current ACF. 11 abo,ve' Regard'”g the dynamic rgsults, areasonable agree-
0: v(wp) obtained from current ACH®: collisional damping of the ment is obtained betwgen the different approaches. The
Langmuir wavesr=24, [31]. Interpolation formula(33): Solid  larger values for the collision frequency @t w, compared
curve: T=33 000 K. Dashed curvef=16 000 K. X correspond to ~ With the static values/(0) have also been shown in Fig. 7

FIG. 12. Static and dynamic collision frequencies. MD results

O(n,, T)=1. above.
C=c,/[In(1 .,.r—l) + 05F2®]: VI. CONCLUSION
We discuss the optical conductivity of dense plasmas,
D=[T%+ag(1+ag*?) /(I +as). considering experiment, theory, and numerical simulations as

three different aspects. As a special case, the optical conduc-
tivity o(w) includes the dc conductivityy4.=a(0).

Our focus is on MD simulations for the current ACF’s.
They are used to extract the dynamical conductivityw) as

=0.3, ¢,=0.35, andcs=0.1. They are fixed by the low- . L .
density expansion of the dc conductivit@pitzer formula well as _the dynamical collision frequ_en@{m)_. . .
simulation procedures led to qualitative improvements in

(see below, the strong degenerate limit, and numerical data . ¢ ) its [B2]. For the first ti
for the dc conductivity in the intermediate parameter region.Comloarlson 0 previous results [ih2]. For the first time, we

This expression is an improvement of well-known approxi-Showed that after introducing a mean-field contribution, lon-

mations for the static conductivity such as the Born result gitudinal and transverse conductivities coincide in the long-
wavelength limitk— O within the numerical accuracy. Vari-

(4mer)¥keT)¥2[1 O] ous known properties such as the high-frequency behavior
oﬁé’m:O.ZQQT > In T (349 and analytic constraints like the Kramers-Kronig relations

m were used to assess the MD results and to show the consis-

for a statically screened Coulomb potentf@8] or the te€ncy of our approach. For all conditions considered here,
Spitzer formula for the low-density limit: these restrllctlons were fu]ﬂlled within the numerlclal' preci-
sion. Treating the mean field separately, the remaining con-

The set of parameters is given bg,=0.03064, a;
=1.1590, a,=0.698, a;=0.4876, a,=0.1748, a;=0.1, a4
=0.258, b;=1.95, b,=2.88, b;=3.6, ¢;=1.5, ¢,=6.2, c3

Spitzer_ (4en)?(kgT)%? 3 -1 tributions to the Iong-rgnge_part of the forc_es are acc_ounted
™ " InI’ (35  for by Ewald sums which give only a marginal effect if the
simulation box is sufficiently large.
Considering the MD simulations foF=1, Fig. 10, the However, the classical MD simulations are based on a
systematic behavior agrees very well with analytical resultgpseudopotential instead of the original Coulomb interaction.
obtained from the interpolation formul&3). As an appropriate potential to mimic quantum effects, the

With respect to the simulations of the dc conductivity for Kelbg potential is taken which is obtained from a systematic
a fixed temperaturd =33 000 K and varying coupling pa- treatment of quantum effects so that static equilibrium prop-
rameterl” shown in Fig. 11, comparison with the interpola- erties are correctly reproduced. It is an open question to
tion formula(33) and with experimental data is made. While which extent this potential is able to reproduce dynamic
the agreement between the simulation results and the inteproperties of a quantum Coulomb system. Further investiga-
polation formula is excellent for values up Io=1, discrep- tions will compare MD simulations with wave packet or path
ancies arise for higher values bf However, the principal integral simulations which allow for a more consistent treat-
behavior of the MD simulations can be reproduced with thement of quantum effects. In particular, the formation of
interpolation formula. In contrast, larger discrepancies ardound states will be an essential aspect in the future devel-
found when comparing results for finite frequencies; see Figopment of numerical simulations.
9. The theoretical description, based on analytical expres- Theoretical investigations are based on quantum statistics,
sions and MD simulations, leads to a good understanding afiking adequately into account the Coulomb interaction and
experimental results which are shown in the figure as well. quantum effects. In this approach, the formation of bound
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states is correctly included. Present perturbative treatmenthould be analyzed in order to investigate the dynamical col-
lead to analytical results. However, they are restricted tdision frequency at higher frequencies. As already discussed
small nonideality parameter valuds<1 or small plasma above, classical MD simulations based on pseudopotentials
densitiesn. In our approach, the weak-coupling limit has such as the Kelbg one fail to reproduce the correct high-
been improved, taking into account dynamical screening anffequency asymptote for the collision frequency so that
strong binary collisions. Considering a renormalization facdarger discrepancies compared with experiments are ex-
tor r(w), the correct low-density limit of transport coeffi- pected. Instead of classical MD simulations, consistent quan-
cients is achieved. The comparison with MD simulationstum simulations such as wave-packet molecular dynamics or
shows that the low-frequency behavior of the optical conducpath integral techniques have to be used to compare with
tivity is given in good approximation as long &s<1. For  experimental data for high frequencies.
higher values ofl’, the quantum-statistical approach has to Experimental results suffer, e.g., from the transient nature
be evaluated using methods beyond perturbation theory or byf the produced plasma. lonization, density, and temperature
deriving interpolation formulas. On the other hand, MD profiles have to be considered to infer local plasma condi-
simulations based on the Kelbg pseudopotential cannot rdions in order to compare with simulations or calculations.
produce the correct high-frequenty > w,) behavior of the  Experiments are performed not only with hydrogen plasmas,
optical conductivity for quantum Coulomb systems. but also with other materials, in which case the electron in-
Within the quantum-statistical treatment, the formation ofteractions are not pure Coulomb anymore. The formation of
bound states is described in the low-density limit applyingbound states is an important feature in present experiments,
the model of a partially ionized plasma. At high densities,since the contribution of the ionized component is extracted
this model breaks down, and one has to apply adequate cohy applying the model of the partially ionized plasma. Nev-
cepts such as the spectral function in order to describe thertheless, for the plasma conditions considered here, the con-
density modification due to medium effects, in particular thesistency between MD simulations, perturbative calculations,
dissolution of bound states. This consideration of boundnd experimental results is inferred from the present work.
states becomes more involved if, instead of a simple hydro-
gen plasma, ions with higher charges are considered allow-
ing for different stages of ionization. The authors thank R. Thiele and Th. Millat for some of
MD simulations as well as quantum-statistical calcula-the numerical calculations as well as G.E. Norman, and A.A.
tions of the dynamical conductivity have to be confrontedValuev for fruitful discussions. I.M. acknowledges support
with experimental data. In this paper we focused on the dérom RFBS by Grant No. 03-07-90272v, the Dynasty Foun-
conductivity. For small nonideality up tb~1, we found dation, and the International Center of Fundamental Physics
satisfactory coincidence between theory, MD simulationsjn Moscow. H.R. and G.R. acknowledge support through the
and experiments. In forthcoming work, applications toVirtual Institute VI/VH 104 from the Helmholtz Gemein-
bremsstrahlung[2] as well as Thomson scatteringt4]  schaft.

ACKNOWLEDGMENTS

[1] A. Selchow, G. Ropke, A. Wierling, H. Reinholz, T. Pschiwul, [12] H. Reinholz, I. Morozov, G. Ropke and Th. Millat, Phys. Rev.

and G. Zwicknagel, Phys. Rev. B4, 056410(2001). E 69, 066412(2004.
[2] A. Wierling, Th. Millat, G. Ropke, R. Redmer, and H. Rein- [13] J. P. Hansen, and I. R. McDonald, Phys. Rev.28, 2041
holz, Phys. Plasmas, 3810(200J. (1982); L. Sjogren, J. P. Hansen, and E. L. Pollodkid. 24,
[3] A. Wierling, Th. Millat, and G. Ropke, J. Plasma PhyzD, 1544(198)).
185 (2004. [14] J. P. Hansen and |. R. McDonal@heory of Simple Liquids
[4] H. Reinholz, Yu. Zaporoghets, V. Mintsev, V. Fortov, |. Moro- (Academic Press, London, 1976
zov, and G. Ropke, Phys. Rev. &, 036403(2003. [15] J. P. Hansen, iStrongly Coupled Plasma Physjedited by F.
[5] H. Reinholz, R. Redmer, G. Répke, and A. Wierling, Phys. J. Rogers, H. E. DeWittPlenum, New York, 1987 p. 111.
Rev. E 62, 5648(2000. [16] I. V. Morozov, G. E. Norman, and A. A. Valuev, Dokl. Akad.
[6] H. Reinholz, Aust. J. Physs3, 133(2000. Nauk 362, 752(1998 Dokl. Phys. 43, 608(1998.
[7] H. Reinholz, G. Ropke, I. Morozov, V. Mintsev, Yu. Zap- [17]I. V. Morozov, G. E. Norman, and A. A. Valuev, Phys. Rev. E
aroghets, V. Fortov, and A. Wierling, J. Phys. 36, 5991 63, 036405(2001).
(2003. [18] D. Klakow, C. Toepffer, and P.-G. Reinhard, J. Chem. Phys.
[8] V. P. Silin, Zh. Eksp. Teor. Fiz47, 2254 (1964 [Sov. Phys. 101, 10766 (1994; M. Knaup, P.-G. Reinhard, and C.
JETP 20, 1510(1965]. Toepffer, Contrib. Plasma Phyg.1, 159 (2001).
[9] C. D. Decker, W. B. Mori, J. M. Dawson, and T. Katsouleas, [19] B. Militzer and D. M. Ceperley, Phys. Rev. Let85, 1890
Phys. Plasmad, 4043(1994). (2000.
[10] P. Mulser, F. Cornolti, E. Bésuelle, and R. Schneider, Phys[20] W.-D. Kraeft, D. Kremp, W. Ebeling, and G. Répk@uantum
Rev. E 63, 016406(2000. Statistics of Charged Particle SystertRlenum, New York,
[11] Th. Bornath, M. Schlanges, P. Hilse, and D. Kremp, Phys. Rev.  1986.
E 64, 026414(2001). [21] C. Deutsch, Phys. Lett60A, 317 (1977); C. Deutsch, M. M.

066408-11



MOROZOQV et al. PHYSICAL REVIEW E 71, 066408(2005

Combert, and H. Minooipid. 66A, 381(1978. and G. Ropke, J. Phys. R6, 6259(2003.
[22] T. Pschiwul and G. Zwicknagel, J. Phys. 26, 6251(2003. [34] S. Pfalzner and P. Gibbon, Phys. Rev5F, 4698(1998.
[23] T. Pschiwul and G. Zwicknagel, Contrib. Plasma PhyS, [35] M. Schlanges, Th. Bornath, D. Kremp and P. Hilse, Contrib.

393(2003. Plasma Phys43, 360 (2003.
[24] W. Ebeling, G. E. Norman, A. A. Valuev, and I. A. Valuev, [36] Th. Bornath, M. Schlanges, P. Hilse, and D. Kremp, J. Phys. A

Contrib. Plasma Phys39, 61 (1999. 36, 5941(2003.
[25] A. V. Filinov, M. Bonitz, and W. Ebeling, J. Phys. 86, 5957 [37] A. Esser, R. Redmer, and G. Ropke, Contrib. Plasma P4g;s.

(2003. 33(2003.
[26] G. D. Mahan,Many-Particle Physics(Plenum, New York, [38] J. M. Ziman, Philos. Mag6, 1013(1961).

1990. [39] V. A. Sechenov, E. E. Son, and O. E. Shchekotov, Sov. Phys.
[27] S. Ichimaru, Vol. 1,Statistical Plasma Physics: Basic Prin- TVT 15, 415(1977).

ciples (Addison-Wesley, Reading, MA, 1992 [40] Yu. V. lvanov, V. B. Mintsev, V. E. Fortov, and A. N. Dremin,
[28] R. Kubo, M. Toda, and N. Hashitsum8tatistical Physics Il Sov. Phys. JETP71, 216(1976.

(Springer, Berlin, 1986 [41] A. A. Bakeev and R. E. Rovinskii, Sov. Phys. TV8, 1121
[29] We stress that linear response is not applicable in strong fields-  (1970.

e.g., in intense laser beams; $6el1]. [42] V. M. Batenin and P. V. Minaev, Sov. Phys. TV®, 676
[30] M. P. Allen and D. J. TildesleyComputer Simulation of Lig- (1972.

uids (Clarendon Press, Oxford, 1987 [43] S. I. Andreev and T. V. Gavrilova, Sov. Phys. TVI3, 176
[31] I. V. Morozov and G. E. Norman, JETROQ, 370(2005. (1975.
[32] Th. Millat, PhD thesis, University of Rostock, 2003. [44] A. Holl, R. Redmer, G. Ropke, and H. Reinholz, Eur. Phys. J.
[33] Th. Millat, A. Selchow, A. Wierling, H. Reinholz, R. Redmer, D 29, 159(2004; IEEE Trans. Plasma ScB3, 77 (2005.

066408-12



